

OEILM: an ontological framework for environmental big data research infrastructures

Zhiming Zhao

z.zhao@uva.nl

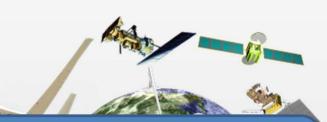
Project number: 283465

Environmental problems

ENVRI research infrastructure

Environmental data:

- Observation and measurement, time and locations
- carbon
- plate
- seafloor
- Space weather,
- ocean
- bio diversity
- **C** ...



ENVRI research infrastructure

Environmental data:

- Observation and measurement, time and locations
- carbon
- plate
- seafloor

Difficulties in sharing and integrating data among different research infrastructures.

- Environmental research infrastructures
- **ENVRI** research project
- Open Environmental Information Linking Model (OEILM)
- Use cases
- Discussions

An environment research infrastructure

- Acquisition -- brings the measures/data streams into the system (non-reproducible data)
- Curation -- manages/maintains quality data (reproducible data)
- Access -- facilities discovery, access (published data)
- **Processing --** facilities analysis/mining/experiments (combined/derived data)
- Community Support -- supports users to conduct their roles in communities (user generated data)

ESFRI: European strategic forum of research infrastructure

 Multidisciplinary seafloor observatory

EMSO

 Plate observing system

EPOS

 Global ocean observing infrastructure

 Integrated carbon observation system

 Biodiversity and ecosystem research infra

ICOS

14/05/2014

Project number: 283465

Diverse standardises

- **Terminologies**
- **Data models**
- Metadata
- Service interfaces

Semantic isolation

- Between metadata
- Between data content
- **Between services**

	Metadata standards	Acquisition	Curation	Processing	Access	Community
	SensorML	Y	Y		Y	
1	NetCDF			Y	Y	
	ISO19115	Y	Y		Y	Y
	ISO19156	Y	Y			
	CSR	Y	Y			
	Dublin Core				Y	
	CERIF	Y	Y		Y	
	CSMD	Y	Y		Y	Y
	INSPIRE	Y	Y		Y	Y

- Cluster project for environmental ESFRIs
- Identify common operations and needs among ESFRIs
- Guide the development of ESFRIs
- Promote Interoperability
- Enable interdisciplinary scientists to access, process, study and correlate data from multiple domains for system level research.

Key problems and approaches

- Identify common requirements and operations from RIs
 - → ODP approach
- Guide the RI development → Reference model approach
- Semantic gaps between RIs → ontological framework (OEILM)

Identify common requirements ENVRI and operations

Approach

- Collect use cases and requirements from all ESFRIs
- Analyse the use cases using the ODP approach
- Define a minimal set which crosses most of the ESFRIs

14/05/2014 Project number: 283465

ENVRI Common Functions (Curation)

Functions/operations in the Data Curation Sub-system

Functions/Embedded Services	ICOS	EPOS	EMSO	EISCAT-3D	LifeWatch	EURO- Argo
Data Quality Checking	Yes	Yes	Unknown	Yes	Not Applicable	Yes
Data Quality Verification	Yes	Unknown	Unknown	Unknown	Not Applicable	Yes
Data Identification	Yes	Yes	Yes	Unknown	Not Applicable	Unknown
Data Cataloguing	Unknown	Yes	Yes	Unknown	Not Applicable	Unknown
Data Product Generation	Yes	Yes	Yes	Yes	Not Applicable	Yes
Data Versioning	Yes	Unknown	Unknown	Unknown	Not Applicable	Unknown
Workflow Enactment	No	Yes	Unknown	Yes	Not Applicable	No
Data Preservation	Yes	Yes	Yes	Yes	Not Applicable	Yes
Data Replication	No	Yes	Unknown	Yes	Not Applicable	Yes
Data Replication Synchronisation	No	Unknown	No	Unknown	Not Applicable	Yes

14/05/2014 Project number: 283465

Common Functions (Access)

Functions/operations at Data Access Sub system

Functions/Embedded Services	ICOS	EPOS	EMSO	EISCAT-3D	LifeWatch	Euro-Argo
Access Control	Unknown	Yes	Unknown	Yes	Unknown	Unknown
Data Conversion	Yes	Yes	Yes	Yes	Yes	Yes
Data Compression	No	No	No	No	Yes	No
Data Visualisation	Yes	Yes	Yes	Yes	Yes	Yes
Data Publication	Yes	Unknown	Yes	Unknown	Yes	Yes
Data Citation	No	Unknown	Yes	No	Unknown	No
(Resources/Data) Annotation	Yes	Yes	Yes	No	Yes	Yes
Metadata Harvesting	Unknown	Unknown	Yes	No	Unknown	No
Resource Registration	Unknown	Yes	Yes	No	Yes	No
Semantic Harmonisation	No	Yes	Yes	No	Yes	No
Data Discovery and Access	Yes	Yes	Yes	Yes	Yes	Unknown

A full function list is on ENVRI wiki http://envri.eu/group/envri/wiki/-wiki/Main/Analyse%20Common%20Requirements%20for%20Data%20Processing

Project number: 283465

ENV/RI Analysis method

 Open distributed processing (ODP): a multi viewpoint model for distributed systems. (ISO/IEC 10746)

Enterprise

Business Aspects

The purpose, scope and policies for the organization that will own the system


What for? why? who? when?

Information

Information System Aspects

Information handled by the system and constraints on the use and interpretation of that information

What is it about?

Computational

Application Design Aspects

Functional decomposition of the system into objects suitable for distribution

How does each bit work?

Implementation

System hardware & software and actual distribution

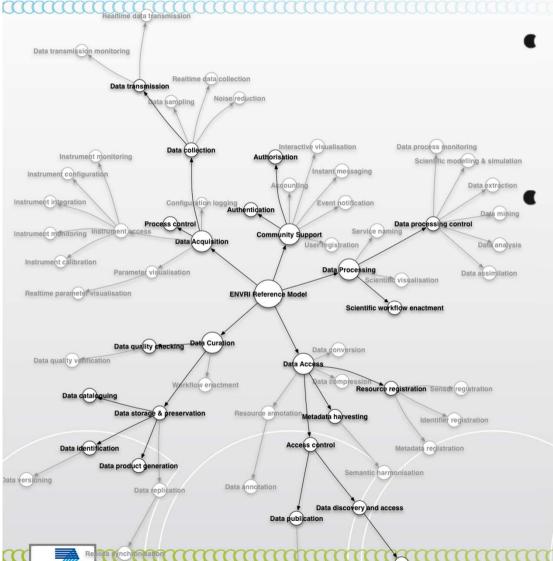
With what?

Engineering

Solution Types & Distribution

Infrastructure required to support distribution

How do the bits work together?


14/05/2014

Project number: 283465

13

Identify a minimal set

Data visualisation

Analysis of common requirements of ESFRI ENV Rls, resulted in a set of common functionalities

Identified a minimal model

- Focuses on core interactions
- Represents the most fundamental functionalities
- A skeleton which can be extended
- Future development will be based on community interests

ENVRI RM: Science Viewpoint

- Derive use scenarios from common requirements, identifying communities, roles, behaviours
- Model defines:
 - 5 common Communities in according to 5-subsystem
 - Data Acquisition: who collects raw data
 - Data Curation: who manages, archives quality data
 - Data Publication: who assists publication, discovery & access
 - Data Service Provision: who provides services to derive knowledge
 - Data Usage: who makes use of data/services
 - Community roles & behaviours

14/05/2014 www.envri.eu/rm

Project number: 283465

Data-oriented approach:

- Follow data-lifecycle in each subsystems
- Identify information objects, actions, state changes when events/actions occur

Model defines:

- A set of information objects handled by a subsystem
- A set of action types that cause the states changes
- A set of constraints on those objects
- Oynamic schema -- how information objects evolve as the system operates
- Static schema -- allowable state changes

ENVRI RM: Computational VP

Service-oriented, Brokered approach

- Core functionality is encapsulated in a set of service objects
- Access to such object via brokers which provides an interoperability layer between heterogeneous components

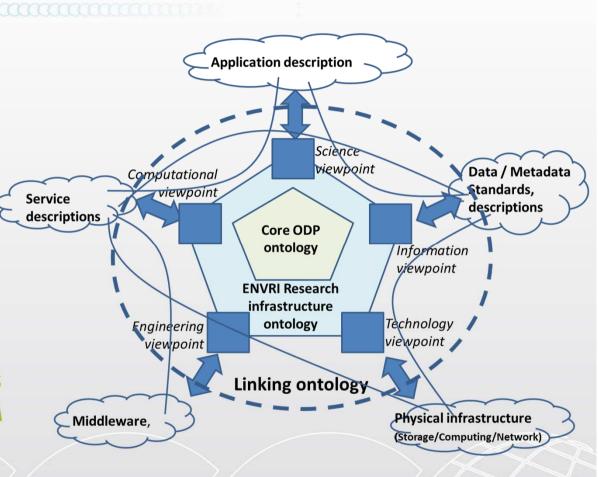
Model defines

- A set of computational objects
 - Each encapsulates specific functionalities
 - Each provides a set of interfaces to invoke functions
- A set of binding objects to coordinate multi-party interactions

14/05/2014 Project number: 283465

NIVER OEILM: Ontological framework

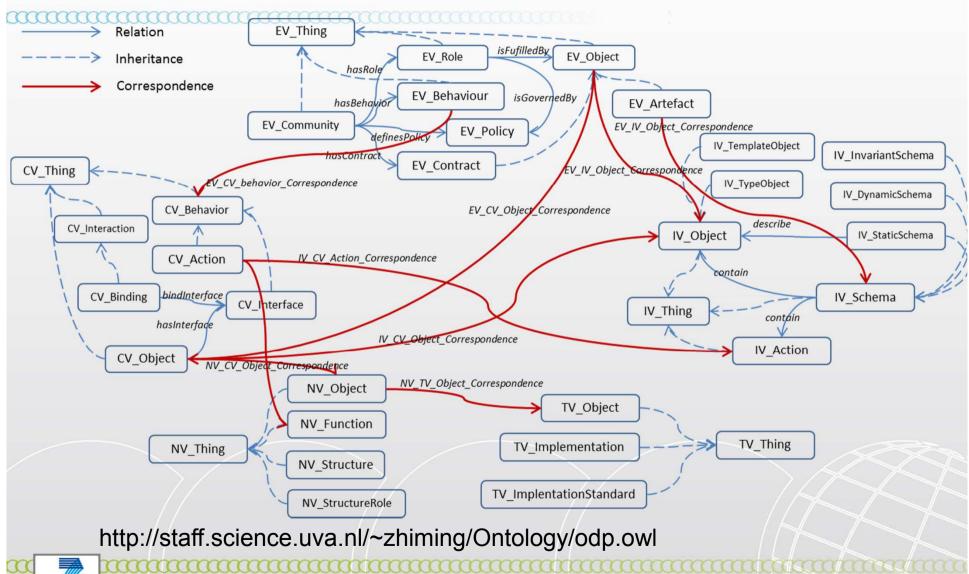
ODP ontology

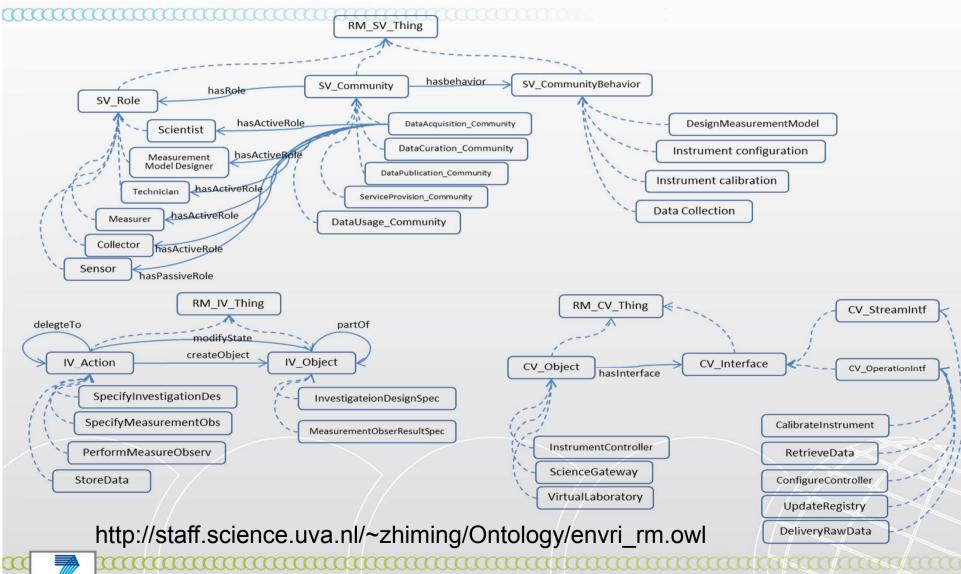

- Vocabulary in ODP
- Five viewpoints

ENVRI RM ontology

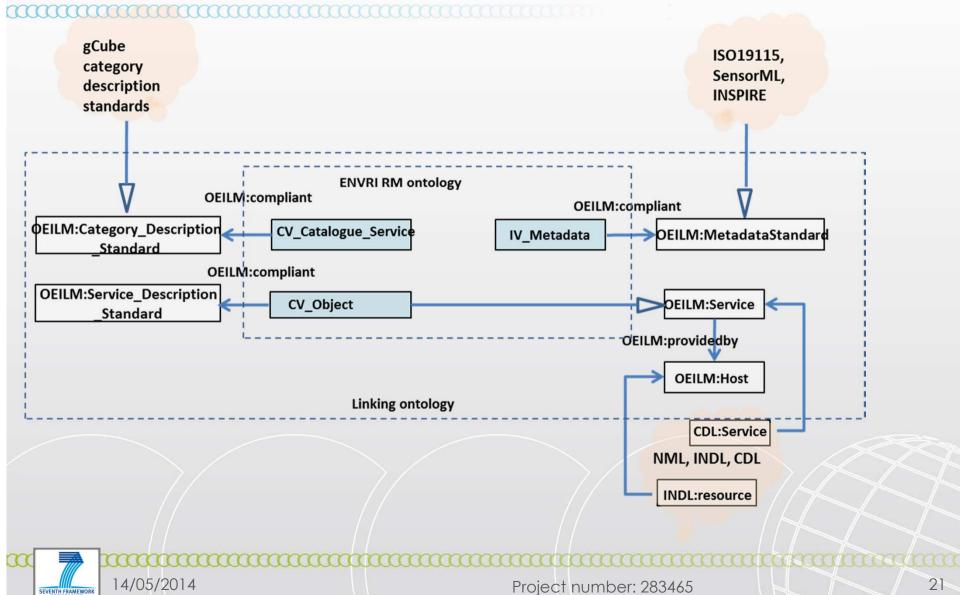
- Vocabulary in ENVRLRM
- Five viewpoints extended from ODP

Linking ontology


 Concepts/properties extend the ENVRI RM from five viewpoints


ODP core ontology (part)

SEVENTH FRAMEWORK PROGRAMME


ENVRI RM ontology (part)

SEVENTH FRAMEWORK PROGRAMME

Linking ontology (part)

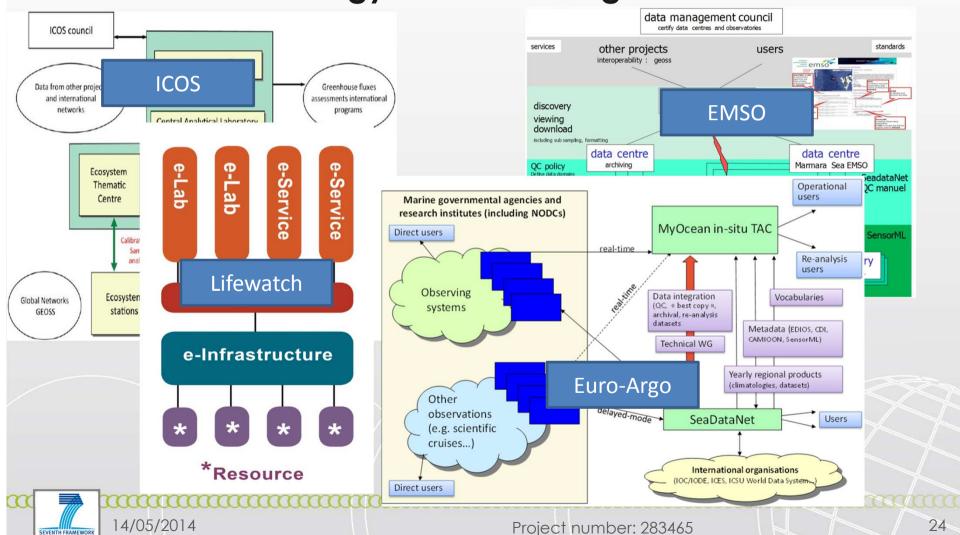
e_Regis * O Data_Resource_R Community Gatew CV Computation Query_Informati on Computational O Backu pecify_Measure RM_Computational_Viewpoint_Thi... Coordinate Data

Exp * Resolve Identif sh_Data Export Data CV Interface <?xml version="1.0"?> <rdf:RDF ign_of_Measu * Import Data xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns="http://staff.science.uva.nl/~zhiming/ontology/envri rm.3.owl#" xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#" rmation_Typ xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#" * Distribute Quer User_Working_Sp Export_Dataset Stage Ta ational Viewpoint xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:odp="http://staff.science.uva.nl/~zhiming/ontology/odp.3.owl#" Conceptual_Mode xmlns:xsd="http://www.w3.org/2001/XMLSchema#" xmlns:swrl="http://www.w3.org/2003/11/swrl#" xmlns:swrlb="http://www.w3.org/2003/11/swrlb#" ← → C fi anvirontology.appspot.com/main, ☆≡ xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" or quick access, place your bookmarks here on the bookmarks har. Import bookmarks n Inforn Open Distributed Processing ontology editor xml:base="http://staff.science.uva.nl/~zhiming/ontology/envri rm.3.owl"> <owl:Ontology rdf:about=""> New __Load Template ___Save Template ___ Upload ___ Download ___ Plan ___ Help <owl:versionInfo xml:lang="en">Version 1</owl:versionInfo> Graph View OWL View Computational Object <Contributer rdf:datatype="http://www.w3.org/2001/XMLSchema#string"</pre> Access Broker Acquision_Service Zhiming Zhao, Z. Zhao@uva.nl. University of Amsterdam</Contributer> Admin_Gateway_Host It is a representation of the graph Authentication Service <rdfs:comment xml:lang="en"><p style="margin-top: 0"> Authorisation Service Outline Citation Service </p> Community Gateway <p style="margin-top: 0"> Data Export Service date: 26-march-2013 Data_Import_Service Data Processor <:/p&at: - Data_Query_Service <p style="margin-top: 0"> Data Resource Registra Computational view: Information model for ENVRI Execution Resource Host </p> reference model ontology editor (ODPOntology) External_Resource Identification Service <p style="margin-top: 0"> Instrument Host - computational ojbects have been added Metadata Service <:/p> Postprecessor Prenncessor <p style="margin-top: 0"> Process Coordination Service - interface have been added Process_Resource_Register Upload Broker </p> □ Diterface <p style="margin-top: 0"> Access Data - properties to the interface is modelled as sub property of interface Acquire Identifies </p&qt; Authenticate User <p style="margin-top: 0"> The online tool: in the odp ontology, has interface will have two sub properties: http://envriontology.appspot.com/main/ "http://staff:science.uva.nl/~zhiming/Ontology/http:/

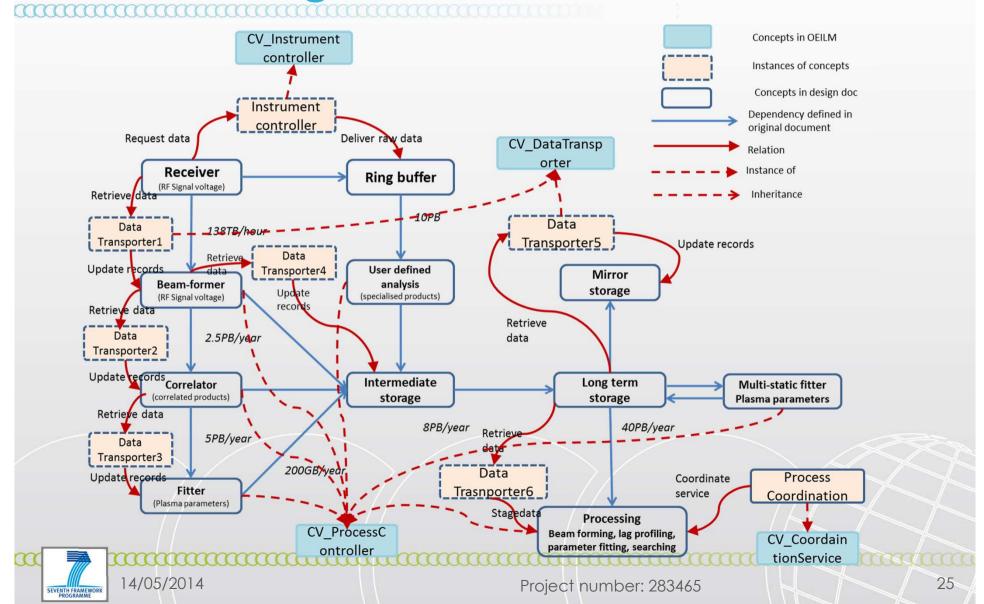
enwontology.appspot.com/main/

14/05/2014

Project number: 283465

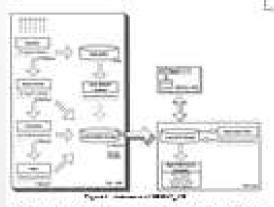

- **ESFRI** information sharing
- Resource discovery and workflow planning

SEVENTH FRAMEWORK PROGRAMME


14/05/2014 Project number: 283465 23

Use case 1:Sharing design ENVRI documents between ESFRIs

Different terminology makes sharing difficult



Annotating ESFRI documents ENVRI using OEILM

Step 1: design doc formalization

The matrices of William J B discussion and species is disputed in Typical in New years.

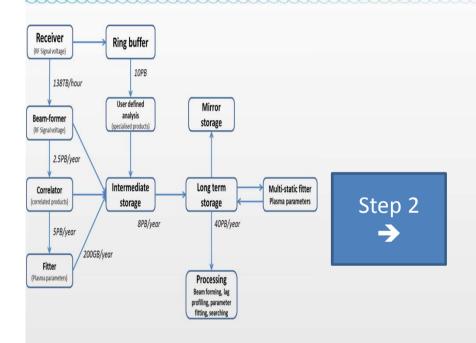

In the Matrices of th

The set of the common temperature [1] is not being a comparison of the common of the common of the common temperature of the common of the com

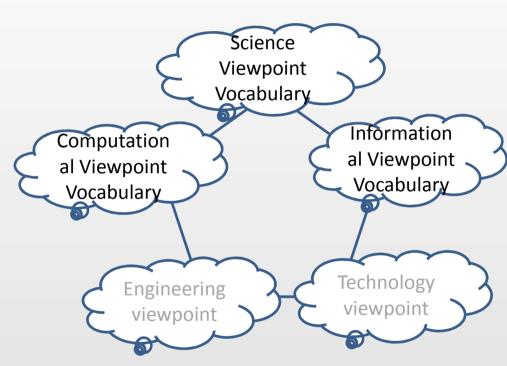
It is a series of a trap New Yorky and Editable the recomparison as the protein account and protein a the obtaining transit at passes of their Neglecture and traps to sell a condition the contenting and proteining traps the obtaining proteining and the contention of

Provided by RI designers,

http://envri.eu/eiscat 3d-study-case

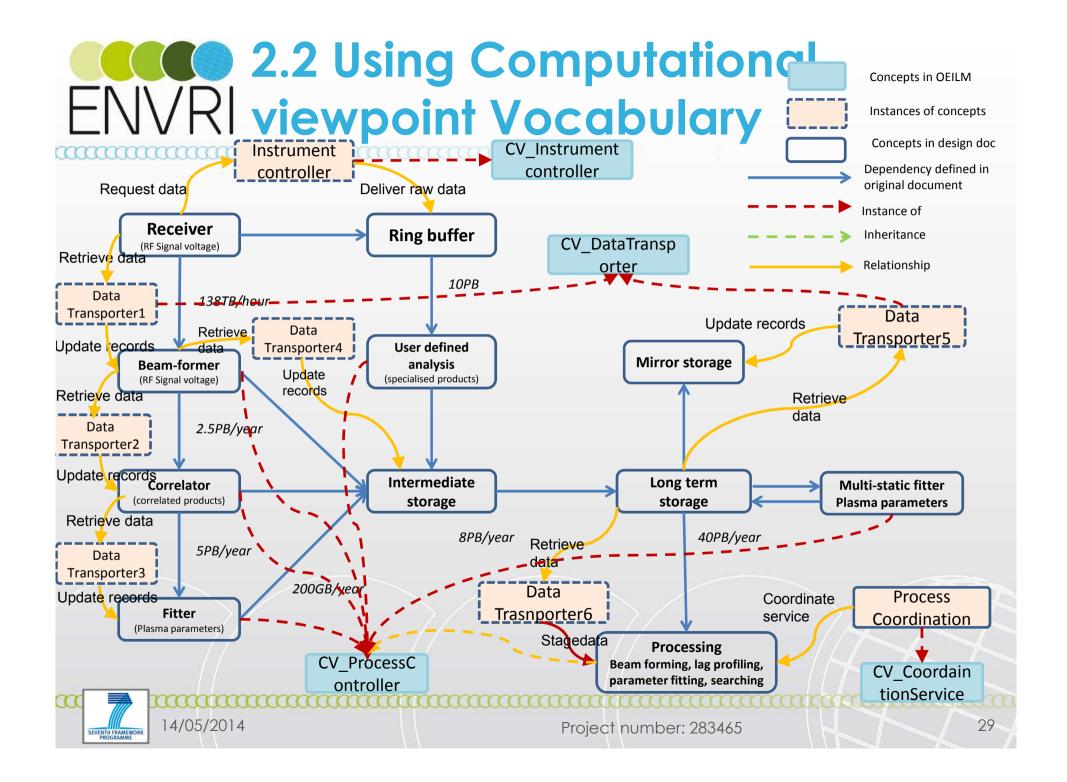


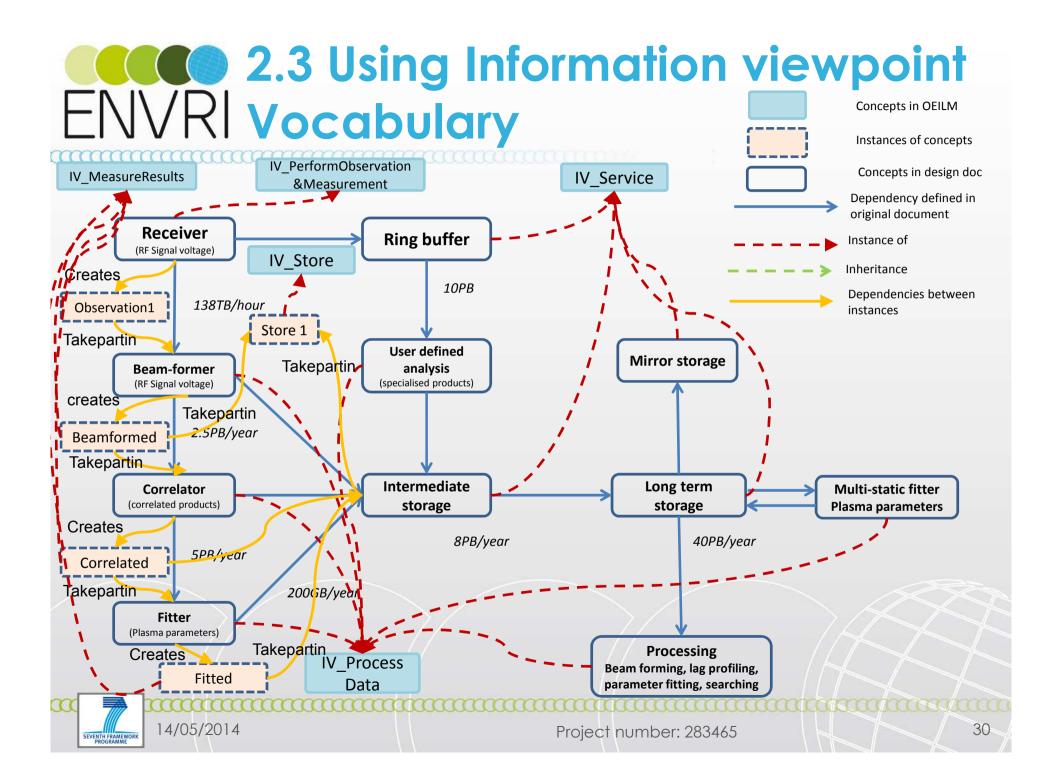
Identify the processes/data from the design documents



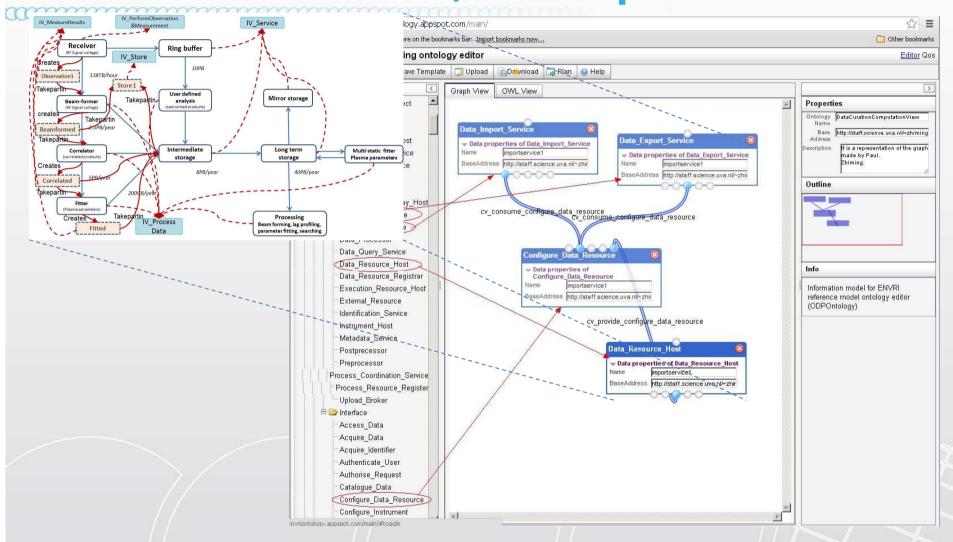
14/05/2014 Project number: 283465 26

Step 2: find proper OEILM ENVRI classes/properties (RM layer)


Map the concepts/data to the ENVRI RM concepts



- 1) Find the instances/classes
- 2) Identify the missing ones between instances



2.1 Using Science viewpoint ENVRI Vocabulary Concepts in OEILM Instances of concepts SV Role Concepts in design doc SV_Sensor Dependency defined in original document Receiver **Ring buffer** (RF Signal voltage) Instance of Inheritance 10PB SV Storage 138TB/hour **User defined** Mirror storage **Beam-former** analysis (specialised products) (RF Signal voltage) 2.5PB/year Intermediate Long term **Multi-static fitter** Correlator (correlated products) storage storage Plasma parameters 8PB/year 40PB/year -5PB/year SV **Fitter** 200GB/year (Plasma parameters) ServiceComposition SV DataProduct **Processing** Generation Beam forming, lag profiling, parameter fitting, searching SV Community 14/05/2014 **Behavior** 28 Project number: 283465 SEVENTH FRAMEWOO

ENVRI annotation/description

SEVENTH FRAMEWORK PROGRAMME

14/05/2014 Project number: 283465

31

Step 3: Match-making

• From the annotation, we can identify the main functional components:

- Science Viewpoint
 - SV_Role (SV_Sensor, SV_Storage)

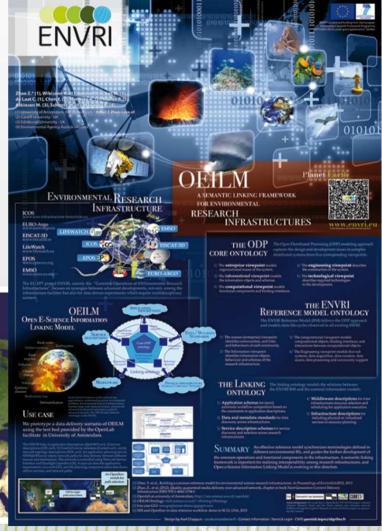
- SV_CommunityBehavior(SV_ProductGeneration, SV_ServiceComposition)
- Computational Viewpoint
 - CV_InstrumentController, CV_DataTransporter, CV_ServiceCoordinator, CV_ProcessController
- Information Viewpoint
 - IV MeasurementResults, IV Store, IV Service, IV ProcessData

• Functional requirements:

- Acquisition:
 - SV Sensor- CV InstrumentController- IV MeasurementResults
- Curation
 - SV_Stoage, CV_Transporter, IV_Annotation, IV_PersistentIdentifier, IV_Metadata
- Access
 - SV_Storage, CV_Transporter, IV_Metadata, IV_Identifier,
- Processing
 - SV_ProductionGeneration, SV_ServiceComposition, CV_Staging, CV_ServiceCoordinator, CV_ProcessController, IV_ProcessData, IV_Service,
- Community

EGI infrastructure

- Curation (annotation, replication, catalogue)
- Processing (computing power, parameter sweeping tool, vis, etc.)
- Access (metadata, catalogue, AAA, storage, transfer)



14/05/2014 Project number: 283465 32

Use case 2: application ENVRI planning using linking ontology

- Application QoS ←→ Services
 /Data ←→ Devices ←→ Network
 paths
- Live demo in SC 13

Discussion

designer

Design documents of ESFRI

1. Annotate the design doc:

- Who should do it?
- What methods should follow?
- How to evaluate?

Domain expert/communities

- 3. Not directly included in the model, but their Quality o Experience (QoE) is very important.
- How to include these issues in the analysis?

OEILM/RM expert

ESFRI Develope

ENVRI RM/OEILM is an abstract subset from a set of ESFRI

2. Derive functional requirements:

- What level of details?
- How to synchronise different descriptions?
- How to locate error and fix it when mismatches are detected?

Project number: 283465

- The ENRI project will finish by the end of 2014
- The first version of OEILM has been made available for ENVRI ESFRI
- Ongoing work
 - Use cases with each specific ESFRI
 - Transfer knowledge to ESFRI
 - Collect feedback and refine OEILM for its version 2.
- Dissemination
 - RDA/EUDAT
- Exploitation
 - ENVRI 2 proposal

14/05/2014 Project number: 283465 35

■ ENVRI: www.envri.eu

■ OEILM: http://staff.science.uva.nl/¬zhiming/Ontology

- Thao Z., Gross, P., Wouter. L., Chen Y., Hardisty, A., Martine, P., Magana, B., Schentz, H., (2013) OEILM: a semantic linking framework for environmental research infrastructures, Poster at IEEE e-Science 2013.
- Jiang, W., Zhao, Z., Grosso, P., de Laat, C., (2013) Dynamic workflow planning on programmable infrastructure, IEEE Int'l Conf. on Network Architecture Storage, 2013.
- Chen, Y., Martin, P., Schentz, H., Magagna, B., Zhao, Z., Hardisty, A., Preece, A., Atkinson, M., Huber, R., and Legre. R., Building a common reference model for environmental science research infrastructures. In Proceedings of Envirolnfo2013, 2013.
- Zhao, Z., van der Ham, J., Taal, A., Koning, R., Dumitru, C., Wibisono, A., Grosso, P., de Laat., C. (2012). Planning data intensive workflows on inter-domain resources using the Network Service Interface (NSI), In the 7th Workshop on Workflows in Support of Large-Scale Science. in the context of Supercomputing 2012, Salt Lake City.
- Zhao, Z., Grosso, P. & Laat, C. de (2012). OEIRM: An Open Distributed Processing based Interoperability Reference Model for e-Science, Cloud&Grid interoperability workshop, Gwangju, Korean.
- Zhao, Z., Dumitru, C., Grosso, P. & Laat, C. de (2012). Network resource control for data intensive applications in heterogeneous infrastructures. the International Workshop on High Performance Data Intensive Computing, in 26th IEEE International Parallel and Distributed Processing Symposium, Shanghai.

